A new FEM simulation method of paper materials by using gasket model

Helsinki, Finland

Jian Chen, Jann Neumann, Hans Martin Sauer, Edgar Dörsam 42nd International Iarigai Conference

List of contents

- ✤ 1. Introduction
- ✤ 2. Materials and methods
- ✤ 3. Results and conclusion
- ✤ 4. Outlook

Introduction ——Research Background

TECHNISCHE UNIVERSITÄT DARMSTADT

Introduction — Paper Models

According to different classification criteria, the paper models can be classified into various groups.

September 2015 | Institute of Printing Science and Technology - Technische Universität Darmstadt | 5

Universität Darmstadt | 5

printing

science technology

Introduction —— Paper Simulation

Research status of paper simulation:

- Still no material model provided which could directly be used for paper simulation.
- Only very few previous works attempt to establish a simulation model.
- Constitutive models require a large number of difficult to measure parameters.
- Extension to multiple sheets is difficult.

much easier way?

September 2015 | Institute of Printing Science and Technology - Technische Universität Darmstadt | 6

gasket model.

printing

science

technology

66

- behaviour is most important.
- The mechanical behaviour of gasket in the through-thickness direction is similar to paper materials.
- Thin in one direction, but through-thickness

Introduction —— Gasket Simulation

Characteristics of gaskets:

Material and Method —— Experimental Setup

The air-conditioned laboratory of the Institute of Printing Science and Technology (IDD) is equipped with the universal testing machine Zwick Z050.

Experimental Method

paper

Simulation Process——Fundamental Theory

The definition of the material properties:

- the loading process
- the unloading process

Compressibility model for synthetic gasket material (*Jorwekar, 2006* ^[2]):

$$y = a \cdot \left(1 - e^{-\binom{x}{b}}\right) + c \cdot \left(1 - e^{-\binom{x}{d}}\right) + u$$
[1]

Slope:

$$\frac{dy}{dx} = \left(\frac{a}{b}\right) \cdot e^{-\binom{x}{b}} + \left(\frac{c}{d}\right) \cdot e^{-\binom{x}{d}}$$
[2]

Unloading curve function (due to the unrecoverable strain):

$$u(z) = a \cdot \left(1 - e^{-\binom{z}{b}}\right) + c \cdot \left(1 - e^{-\binom{z}{d}}\right) - \left[a \cdot \left(1 - e^{-\binom{z}{b}}\right) + c \cdot \left(1 - e^{-\binom{z}{d}}\right)\right]$$
[3]

Simulation Process — Defining Material Properties

Simulation Process—Modeling and Simulation

Schematic representation of the simulation model

- i. Defining the material properties
- ii. Building the simulation model
- iii. Meshing the elements
- iv. Defining the constraint conditions
- v. Imposing the force
- vi. Outputting the results

Results and Conclusions —— Paper Simulation under a Defined Force

The simulation of paper material finished here:

- the linear unloading simulation
- the non-linear unloading simulation

Results and Conclusions —— Simulation under Variable Maximum Forces

Three groups of simulations were implemented:

the respective maximum forces applied are 200 N, 400 N and 600 N.

Comparisons between simulations and experiments

Force	200 N	400 N	600 N	800 N
Maximum Pressure (MPa)				
Simulation results	1.82	4.38	6.77	8.00
Experimental results	2.03	4.06	6.09	7.98
Deviation	10.3 %	-7.9%	-11.2%	-0.025%
Residual Strain (-)				
Simulation results	0.14	0.21	0.26	0.30
Experimental results	0.09	0.19	0.24	0.32
Deviation	-64.4 %	-13.5%	-7.7%	6.2%

Conclusions:

- The accuracy of simulation under a specific force is very good.
- The gasket model could be perfectly used for paper simulation.
- To a certain degree, this simulation method could be used for simulations under other forces.

Outlook

um

30 25

- 20 - 15 - 10

NM

One sheet ———> Two sheets

Given Key problem:

3D Surface topography of copy paper, the scan area is 1274 μ m × 955 μ m.

955 µm

- How to define the contact between paper layers.
- Establishing a model of paper which accounts for the surface topography.

1274 µm

Thanks for your attention!

Jian Chen¹, Jann Neumann², Hans Martin Sauer¹, Edgar Dörsam¹

 [1] Kaulitz, T., 2009. Bilden von Schneidlagen unter Ausnutzung des Nipinduzierten Effekts für die Druckweiterverarbeitung. (PhD dissertation, Darmstadt University of Technology)
 [2] Jorwekar, P.P., Birari, Y.V. and Nadgouda, M.M., 2006. Cylinder head gasket contact pressure simulation for a hermetic compressor. International Compressor Engineering Conference at Purdue.

 ¹ Institute of Printing Science and Technology Darmstadt University of Technology Magdalenenstr.2
 64289 Darmstadt

² Perfecta Cutting Systems GmbH Schäfferstr.4402625 Bautzen

